Needless to say, at 19,000 Kelvin, the solid gold sample blew past that boundary, heating up to more than 14 times its melting point, which is about 1,300 Kelvin. The team suggests the speed of the heating likely kept the gold from expanding. They blasted the gold to its record-setting temperature in just 45 femtoseconds, or 45 millionths of a billionth of a second.
“The thing that’s intriguing here is to ask the question of whether or not it’s possible to beat virtually all of thermodynamics, just by being quick enough so that thermodynamics doesn’t really apply in the sense that you might think about it
The team notes that the second law of thermodynamics, which states that disorder increases with time, still stands—their work did not disprove it. That’s because the gold atoms reached their extreme temperature before they had time to become disordered, White tells Nature’s Dan Garisto.
Even still, researchers are now faced with a question they had considered all but completely solved nearly four decades ago, per New Scientist: How hot can something really get before it melts? If a material is heated quickly enough, there might be no limit, per the SLAC statement.
Sort of reminds me of the energy-time version uncertainty principle: if an interval is short enough, energy fluctuations can be extremely high.
What I’d like to know here is what the duration threshold to would allow fusion to start is.